EcoLeaf Document Identification No.: ER-05-01 Issued: August 29th, 2014

EcoLeaf Quantification Rules

Japan Environmental Management Association for Industry

Prepared by: Approved by:

Addenda

(Revision history)

Ver. No.	Date	Page		Approval
01	August 29th, 2014		Newly prepared by extracting Section 3 of the guidelines to accompany the production of the Base Document.	

EcoLeaf Quantification Rules

(Purpose)

Section 1: To define for an applicant business, the requirements, the procedures, and the like, pertaining to EcoLeaf quantification (preparing "quantitative environmental information for general public release" and "verification support materials" for verifying the grounds and calculation methods for the publication data) in the EcoLeaf environmental label program.

2. The "quantitative environmental information for general public release" consists of three types of information: a "product environmental aspect declaration (PEAD)", which presents its overview, a "quantitative environmental information data sheet (PEIDS)", which presents its details, and a "product data sheet (PDS)", which presents the actual measurement data and the setting values used in the preparation of the PEIDS.

3. The "verification support materials" consist of "breakdown data sheets", which show the basis for the calculation of the data entered in the product data sheet, "calculation documents", which show the basis for the calculation of the data entered in the PEIDS, and various "flow diagrams", which help understand these. All these verification support materials are handled as to be undisclosed.

(Range of Products Covered by EcoLeaf)

- Section 2: The product range covered by the EcoLeaf environmental label includes industrial products, consumer durables or commodities, etc., which are not limited to final products and include intermediate products such as parts, materials or basic materials. In addition, services can also be included.
 - 2. Product fields and product examples are indicated in the following, without limiting the coverage to these:
 - ① Electronics (heavy electric equipment, home appliances, electronic equipment and parts, information and control devices)
 - 2 Metals (steel, non-ferrous metals, steel products, wires and bearings)
 - ③ Chemicals (basic organic/non-organic chemicals, polymers, processed plastic products, semiconductors, fertilizers, agrochemicals, pharmaceuticals, films, inks and industrial gases)
 - ④ Fibers (natural fibers, synthetic fibers, clothes and industrial textiles)
 - 5 Pulp and paper
 - (6) Rubbers and ceramics (various rubbers, cement, firebricks, and ceramics)
 - ⑦ Machinery and precision machinery (industrial machines and equipment, machine tools, OA equipment's, cameras and clocks)
 - 8 Transport equipment's (automobiles, motorbikes, railroad cars, ships and aircrafts)
 - (9) Various products for consumer use (printed matters and publications, musical instruments, stationary and office supplies, and various products related to food clothing and shelter)
 - (1) Architectures (buildings, homes, and civil engineering structures)
 - (1) Energy (electric power, town gas, petroleum, coal, LNG, and LPG)
 - Diagonal Action of the second second
 - ③ Services (information communication, distribution and others)

(Preparing a Product Environmental Aspect Declaration (PEAD))

Section 3: The PEAD provides essential information compiled from the quantitative environmental information regarding a product in a way that is readily grasped by a user, which means that the presentation must be concise, by paying attention to uniformity and visuals. Consequently, the type and name of the product, the name of the information publisher, and the environmental aspects that are being emphasized, must be represented in a way that is readily understandable.

The contents represented in the PEAD are divided into five sections, with the contents of each section being established as follows:

2. A Section

In order to make clear which product the EcoLeaf environmental label covers, the product category name defined in the PCR is to be stated.

3. B Section

A field for basic information on the EcoLeaf environmental label preparer, in which the following matters are to be listed:

- ① Information publisher's logo and/or symbol mark
- ② Information publisher's name (business name)
- ③ Information publisher's contact information

(location, telephone number, web site URL, name of department in charge, etc.)

4. C Section

A field for basic information on the product under publication, in which the following items are to be stated concisely in order to allow the product overview to be grasped and identified objectively:

- ① Product name
- 2 Product specifications (items specified in the PCR)

5. D section

A field for presenting a product overview in a manner that is visually easy to understand, in which the ranges in the product covered are to be made clear through photographs, illustrations or process flow diagram, etc. If these contain options, and the like, that are outside the scope covered by the EcoLeaf environmental label, the scope that is covered must be indicated clearly.

6. E section

The quantitative environmental information on the product is presented based on the data provided in the PEIDS, concretely and in a manner that is easy to understand. This section is the most important part of the PEAD, and is to be prepared based on the following agreed-upon matters:

(1) Items to be listed

The following three items are compulsory, while additions and modifications are possible on a productto-product basis:

- ① Warming burden (CO₂ equivalents)
- 2 Acidification burden (SO₂ equivalents)

- ③ Energy consumption [MJ]
- (2) Life cycle stages considered

For the three compulsory items mentioned above in (1), the quantitative environmental information from the sum over all the life cycle stages subject to the preparation of the EcoLeaf environmental label (the extent is to be defined with the PCR) is to be provided. In addition, environmental information on a specific life cycle stage can also be listed along.

(3) Usage conditions setting

Conditions such as product usage duration and amounts are to be established in the PCR.

- ① Usage duration (example: ___years...)
- 2 Usage amounts (example: _0,000 sheets, _ liters...)
- (4) Method of representation

The basic method is the bar graph representation; however, other graphs, tables or text may be employed uniformly in each product category.

(5) LCA data supplemental explanation

A descriptive text to supplement the quantification data based on the LCA may be entered.

7. Other relevant eco-design information

Even if it is outside the scope of this program, other relevant eco-design information defined in individual PCR that is factually verifiable can be entered outside the PEAD field:

- (1) Hazardous chemical compound information
- (2) Eco-design system information
- (3) Provision of information to users, each business
- (4) Old vs. new comparison information on a business' own product

(Preparing a Product Environmental Information Disclosure Sheet (PEIDS))

Section 4: Definition of a PEIDS

PEIDS is a document for clearly presenting the quantitative environmental information on a product, which is a characteristic of a Type III environmental label.

The data listed in a PEIDS form the basis of the contents presented in the PEAD described in the previous section, and are results that are obtained through LCA calculations based on the data listed in the product data sheet, which is described below.

The constitution of a PEIDS is shown in Form 2 (at the end of the document), with the main portions being the results from an inventory analysis (upper part of the table) and an impact assessment (lower part of the table), respectively, of an LCA.

1. Life Cycle Stage

The life cycle stage names, which are the items across the PEIDS, are common to inventory analysis and impact assessment results, and consist of four stages: production, distribution, usage and disposal. The titles and specific contents are determined for each stage on a PCR-to-PCR basis. Especially for cases concerning services and products that are base materials, stages of their own may be defined on a PCR-to-PCR basis.

(1) Production Stage

This stage is divided into a base material production stage in which materials are made (for instance, iron steel production from iron ore, coal, etc.), and an article production stage in which the materials are processed and assembled to make parts and products.

(2) Distribution Stage

The stage in which the article produced in the production stage is transported to the place of use; the specific range of transportation, the transportation methods, the place of use, etc., are to be defined on a PCR-to-PCR basis.

(3) Usage Stage

This stage includes the product's power consumption while in operation and standby, the burdens accompanying the production and consumption of fuel required to use the product, and the burdens from the production, distribution, use and disposal of replacement parts and consumables. The specific conditions for usage, maintenance, etc., are defined on a PCR-to-PCR basis.

(4) Disposal Stage

This stage includes the recovery, transportation, separation, grinding, sorting, incineration, detoxification, landfilling, recycling and/or reuse processes, etc., up to the final disposal of an end-of-life product.

2. Data Groups

The data groups, which are the items down the PEIDS, consist of the following energy consumption, inventory analysis and impact assessment.

(1) Energy Consumption

In the PEIDS, an energy consumption field is provided separately, since energy consumption is intimately related to and overlaps with the energy resource consumption and the environmental output in the inventory analysis, and the resource depletion burdens and the environmental output burdens in the impact assessment, which are described below.

(2) Inventory Analysis

This is a list of LCA inventory analysis results, with the substance and energy input and output boundaries being unified and extending to natural environments. Therefore, comparability is maintained among the data listed the PEIDS.

The listed data groups (items down the table) consist of two environmental burden items: consumption and environmental discharge. The consumption burden item is divided into two major category items: exhaustible resources and renewable resources such as water and wood. The exhaustible resources further consist of energy resources such as coal and uranium ore, and mineral resources such as iron ore and bauxite. The environmental discharge burden item is divided into three groups: discharges into the atmosphere such as CO_2 , into bodies of water such as BOD, and into soil.

(3) Impact Assessment

Up to the characterization analysis phase of the impact assessment defined in the LCA is included, and, similarly to the inventory analysis, comparability is maintained among the impact assessment results on the point that the boundaries are unified and extend to natural environments.

Similarly to the inventory analysis, the listed data groups (items down the table) are divided into two burden items: consumption and environmental discharge. The consumption burden item is divided into energy resource and mineral resource depletion burdens, while the environmental discharge burden item is subdivided into category items such as warming and acidification for the atmosphere, and eutrophication for bodies of water. The selection of category items is determined for each product category.

Section 5: Calculation Methods

The data for each of the above items listed in the PEIDS are calculated based on LCA procedures, according to the following methods:

1. Inventory Analysis

(1) Inventory Analysis Calculation Formula

In EcoLeaf, I, the amount of inventory at each stage, can be determined using formula (1), by summing the products between W, the relevant physical quantity, and a, the corresponding base unit.

$$\mathbf{I} = \Sigma (\mathbf{a} \times \mathbf{W}) \tag{1}$$

- I: amount of inventory (amount of crude oil extracted, amount of iron ore excavated, CO₂ output, etc.)
- a: base unit (amount of inventory per unit physical quantity)
- W: physical quantity (quantities used, quantities discharged, quantities treated, quantities transported, etc.)

(2) Base Units

① Definition of base units

Base units are background data (BGD) that are used when conducting an inventory analysis (LCI) and reside in a database, which is used in common. In general, the database consists of "unit process-type data", which describe power and raw material inputs and intermediate product and waste outputs for each processing step, and "process totaling data", which also add the steps that are upstream from it and provide descriptions tracing back to the amounts of crude oil and/or iron ore consumed.

2 Types of EcoLeaf base units

The "process totaling data" scheme is adopted for the EcoLeaf base units, which includes the following two:

[Common Base Units]

Base units prepared by our office for the development of the EcoLeaf environmental label, which can be used commonly to all the product categories as background data for LCI calculations.

[PCR Base Units]

Base units created for each product category as necessary for the purpose of using them on a per-product-category basis, which can be used as background data for LCI calculations only in

the same product category.

2. Impact Assessment

(1) Impact Assessment Calculation Formula

In EcoLeaf, P, the impact assessment quantity per category, such as global warming, at each stage can be determined using formula (2), by summing the products between I, the amount of a relevant inventory, and α , a per-category characterization factor:

 $\mathbf{P} = \Sigma \left(\boldsymbol{\alpha} \times \mathbf{I} \right) \tag{2}$

- P: per-category impact assessment quantity (warming burden, acidification burden, etc.)
- α: characterization factor (equivalent amounts of per-category reference substance)
- I: amount of inventory (amount of crude oil, amount of iron ore, CO₂ output, etc.)

(2) EcoLeaf Characterization Factor

An example of characterization factor table (database) used for per-category impact assessment calculations is given in Appendix 3 (at the end of the document). In principle, this database is to be used in common within this program. For each category such as warming and acidification, characterization factors corresponding to inventory items such as CO₂, NO_x and SO_x are listed, with their definitions and sources clearly mentioned.

(Preparing a Product Data Sheet)

Section 6: The product data sheet provides input or setting data that are used to calculate the data given in the PEIDS. In other words, it is a sheet that indicates the input data and setting conditions used in the LCA calculations at each life cycle stage, in which data obtained by the label preparer through measurements or search-and-collection are listed.

Form 3 (at the end of the document) shows a product data sheet for an assembled product. The contents listed are as per items 1 to 5 of Section 6, and their specific contents are decided on a PCR-to-PCR basis.

1. Product Information

The raw materials and parts that constitute a product concerned are to be listed in mass per product. Information on recycled materials, reused parts, etc., which are used in the product, is also to be listed.

2. Production Site Information

The consumption and discharge amounts for the production (processing and assembly) of major parts and assembly of the final product within a site, which are specified for each PCR, are to be converted into perproduct amounts and listed.

3. Distribution Stage Information

The transportation conditions for, e.g., a product, which are indicated in Section 4-1-(2), are to be listed along with the amounts of substances consumed and discharged during transportation converted into perproduct amounts.

4. Usage Stage Information

Consumption or discharge amounts, including while in operation and standby, are to be converted into perproduct amounts and listed. The information is to consist of usage-related information and replacements/consumables disposal information.

5. Disposal Stage Information

Information on an end-of-life product's recovery transportation, disposal processing and recycling/reuse processing is to be listed.

(Preparing Verification Support Materials)

Section 7: Verification support materials are undisclosed data that are used in the verifications for securing the objectivity, the reliability, the appropriateness, and the like, of a PEAD, a PEIDS and a product data sheet published in this program.

While there are differences depending on the product or service concerned, for an assembled product, the data consist of: ① parts configuration diagrams or various flow diagrams in order to grasp the overview of a product or a life cycle stage concerned; ② breakdown data sheets describing the data and calculation processes that back the contents to be listed in the product data sheet; and ③ calculation documents describing the calculation processes for the inventory analysis and impact assessment results in the PEIDS.

1. Product's Parts Configuration Diagram

As this is a document for the purpose of grasping a structural overview of a product or an overview of the major parts, and provides explanations that supplement the breakdown data sheet (for product), consistency with the latter is important.

A product's parts configuration diagram is shown in Form 4 (at the end of the document), with the example of a washing machine.

2. Flow Diagram

The flow diagram is for the purpose of clearly understanding a stage concerned or a process boundary, and consists of a production flow diagram and a stage flow diagram:

① Production Flow Diagram

As this flow diagram is for the purpose of grasping the range of processes for which data are collected at the production site, and provide supplemental explanation to the breakdown data sheet (for production site) described below, consistency with the latter is important. A production flow diagram is shown in Form 5-1 (at the end of the document).

2 Stage Flow Diagram

As this flow diagram is for the purpose of grasping each of the distribution, usage and disposal stages in detail, and provides supplemental explanation to the breakdown data sheet (for stage) described below, consistency with the latter is important. A stage flow diagram is shown in Form 5-2 (at the end of the document).

3. Breakdown data sheets

These sheets show the calculation processes for the data listed in the product data sheet. The sheets are

divided into three types: 1 (for product), 2 (for production site) and 3 (for stage).

① Breakdown Data Sheet 1 (for product)

A breakdown data sheet 1 is shown in Form 6-1 (at the end of the document): detailed data for the parts constituting the product concerned list the masses in detail by material, by process, and by assembly. Since its major results are to be listed in the product information field of the product data sheet, consistency with the latter is important.

2 Breakdown Data Sheet 2 (for production site)

A breakdown data sheet 2 is shown in Form 6-2 (at the end of the document): listed in detail are the values of the production amounts for each product and the amounts of power and fuel used for a production site unit, and, the method for allocating these and the values per product concerned after allocation. As these results are to be listed in the production site information field of the product data sheet, consistency with the latter is important.

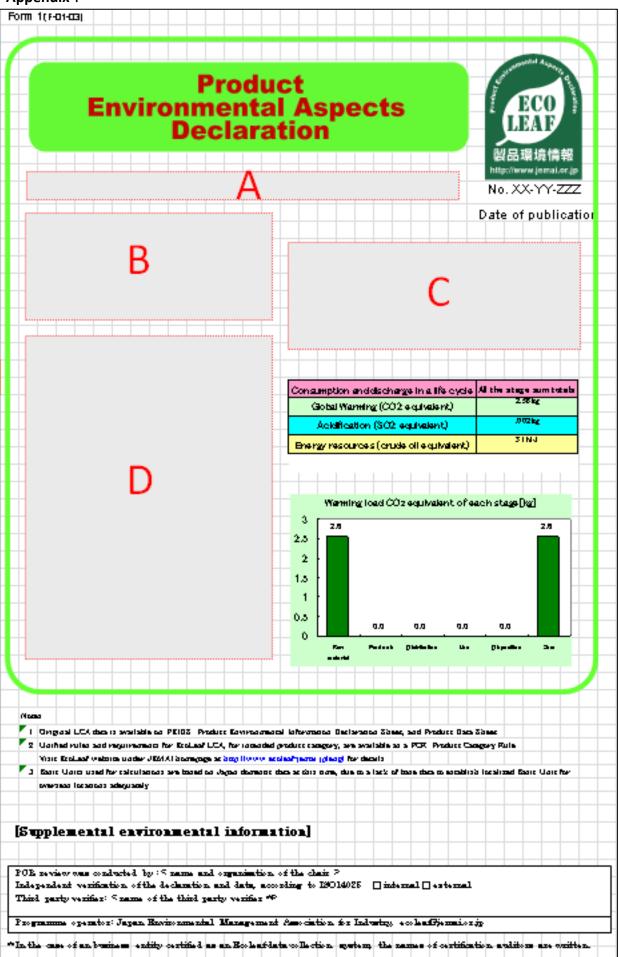
③ Breakdown Data Sheet 3 (for stage)

A breakdown data sheet 3 listing, e.g., the setting conditions of each life cycle stage is shown in Form 6-3 (at the end of the document): listed in detail are the means of transportation of the final product and the amounts transported, the electric power or fuel usage amounts while under use, masses by disposal processing step, and so on. As these results are to be listed in the corresponding distribution stage information, usage stage information and disposal stage information fields of the product data sheet, consistency with the latter is important.

4. Relevant Calculation Documents

The documents are divided into the two types below. The details are described in the verification document preparation manual.

① Relevant Calculation Document 1 (for Inventory Analysis)


This calculation document describes the concrete calculation processes up to the PEIDS listing stage, based on the product data sheet, following the inventory analysis calculation procedure of Section 5-1 and using various base units.

2 Relevant Calculation Document 2 (for Impact Assessment)

This is a document describing the concrete calculation processes for the values listed in the impact assessment obtained by calculation using data from the PEIDS inventory analysis results and the appropriate characterization factors, and following the impact assessment calculation procedure of Section 5-2.

(Revision history)

The present rules are effective on August 29th, 2014.

Fe	mır	G -G2	معہ <u>P</u> i	oduct Envir	onm	ental Inf	formation	<u>Data S</u>	heet (PE	ids)	(100)
	Pro	office (anstaina Vendar Styldann		-100410			h Bha dha 14, masha nila Pada 14, masha			BRANKE
		PCRIn	ne-				Ртовыствре				
		PCR	L			Press and the second second		Packagethg		Weighteenhileg	
-	_			Life Cycle Suge	11	Proes	e cile#				
P CA	(here				Link	Rannendel	Proster	Disting	lise	Disposition	f al al
E.m	ov C		n an		щ м						
	<u> </u>	<u> </u>			NG NG						
					Na						
					Ng la						
					ka Na						
					Na						
					kg .						
	Ι.				kg Ng						
	HI	11			Na						
	H.	11			Na						
	14				Ng						
	P.				Ng Ng						
					Ng						
					Na						
					Ng						
1					Ng Ng						
1					Na						
ł			<u></u>		Ng						
7	⊢				kn in						
					20 20						
					Ng						
		I			Ng.						
					<u>ka</u>						
					kg Ng						
	h.				Na						
	H.				kg i						
	11				kg Ng						
	-		a spalar		Ng						
					Ng						
					Ng l						
					10 10						
			up daar		Na						
					- Kn						
-					2						
1	<u> </u>				ka Na						
		-			Ng						
ŀ	ij				Ng						
-	1.5				Ng Ng						
			a spalaer		- No						

Malan lar raadane Keakaal cannan rokoj

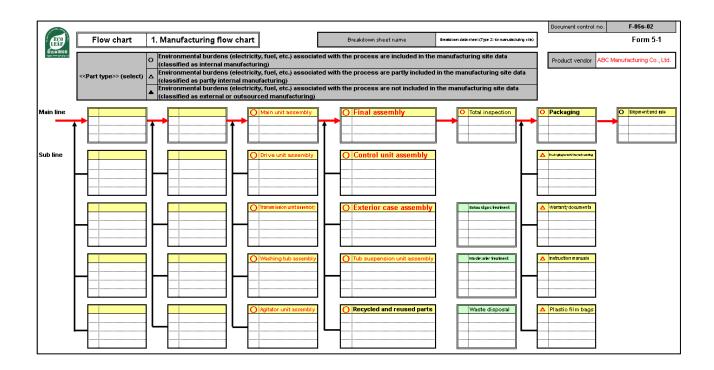
- ...
- - <u>- - -</u> ____
- -

المسلحين من الالتيان بالمتحمين المسلحين. • من عامل المراجع المتحمين المسلحين المحمد المحمد المراجع المراجع الم • من عامل المسلح المسلحين المسلح المسلح المسلح المسلح المسلح المسلح المسلح المسلحين المسلحين المسلح المسلحين ال . . . ------ ----- -

. . . -1.5 . -ملحا المجد وكار محمد ما الأكمي ومعا

..... ----=:= .

المربية المثلا المسر معلماتها


. <u>-----</u>

- L. Der beid die Bendels under Angeleichen under die einer beiden "-" Ben, der beid die eine begenetet wie bied bei debt. 1933 bei under Angeleichen under gestellten bei allereit aus. Name deb die auf beidet under die gestellte die aus auf bei einigt

Plalan tar raadare: Taryat praduct spacific)

tem	1 3 0-424-0 0		Pro tree	oduct dat	ta sheet			(
	ounant control no. Product vander		2-12-12						AND BRANE
	tar ngistation no.								
	CR name			Prostationalgentia	Ртоньстуре	Packagerikgi		Weighteenhileg	
	uct in remainen i par Brindidove of partony		Cynwana and I	cy process seems	nciy nixanca	والمراد ومعاملا فلأ	160 maa la ayay Pasawa	rg - d sameliky it was the fit. A	▲ ,4
	Maile al rame	Wagh (Ng)	Male al rame		Waghi (Ng)	Piacasa rama	Waghi (Ng)	Piacada rama	Waghi (Ng)
ł.									
Ľ									
	Subicial		Sublicial						
	Folal					Sublicial		Sublicial	
Nois									
	uction alternities			dischargesenss	aon for product	co.processing.s	country within	the site.	
30.1	and NO2, should be inde Cooperation	caladin 302, NO	2 aguvalari .						
	Colutation								
Ę.	Cuantily Note								
Communities	Coorteation								
8	Colutation								
	Cluantity Note								
	Contrator								
	Colutation								
5 #	Cluarity Note								
Note									
	ibuban stege infomi			Invites stor	mayanthrayy	nd unaverside	and the second se		
	Means of Inarragentate			reasing rate.	Contrain process in				
046464	Conditora								
1	Cluantity Note								
Nel									
J i hau s	Ange (per unit) use (madubra uandu		a urbina anada ini	hadbu nedu w				
	duct and accessions				anar y near m				
π									
ł.	Delutation Quantity								
•	Nois								
Nois									
<u>420</u> s	position. Recycle un t	emaisen en eer	sunaties and n	pleanent perte	I <u> </u>				
	Classification								
Consertition	Delutation Quantity								
ð	Note								
Noise									
1 Unar	caliconi èscycle staga	un cometaco uci	er producti prec	and mathed and	samenca				
	Classification								
	Delutation								
	Cluantity Note								
ļ,	Classification								
	Dainbulan								
	Outrilly Note								
Noise									
d Gthe									

opendi						ล			Document control no.			F-04s-02
Flow Dia	gram of Product Parts											Form 4
							Brea	kdow	vn sheet name		Breakdown dat	a sileet (Type 1: for proc
			Productuendor						List of main cor	npo	nent units	s and parts
CR name		Product type					Part type	No	Unit (assembly)	No	Part type	Main part na
PCR-No.		Productive ig it (kg)		Package (kg)	Weig it total (kg)		(select)		name			
							Partimaterial A Partimaterial B	\vdash				
							Part/material C	\vdash		-		
		structure dia										
	Example o	t mode	i diagr	am				\square				
								\vdash		⊢		
								\vdash		-		
								\vdash				
								\vdash				
								\vdash				
								\vdash				
								\square				
								\vdash				
								\vdash				<u> </u>
								\vdash				
								\vdash				
								\square				
								\vdash				
								\vdash				
								\vdash		-		

							Document control no.	F-06s	-02
	Flow chart		2. Stage flow cl	nart					Form 5-2
Product type			1	Breakdown sheet name	Breakdown data sheet (1	\pe 3:tor life oycle stage)	Product vendor		
Resource mining and	Produ	etion	J Distribution	Use			sal/recycling		Landfill
transportation	Material production	Productmanufacturing	DISCIDUCION	USE	(Collection)	(Shredding)	(Sorting)	(Recycling)	Lanum
					Collection	Shredding	Iron sorting	Landfill	
									Indu cirtal tta cie landitii
< <conditions>></conditions>	Nonferrous metal sorting	Aluminum rec;sling							
								Copper recycling	

Ð	Ì		Break	down dat	a shee	t(Type	1: for pr	oduct)					[)ocument c	ontrol no.			F-071-02		
		cument with re	ference to	A.4 In Annes	A of ISO	AJ IS 14041.														
<u> </u>	odict name							Sheet	name											
	Туре							Base s	tage											
	adacted by alyear couered			Sheel comple Start month				Repor End m												
-	×Part type>>	(1) Part/materia		tion of enviro	nmentai			ling and a	n nem biy in r	notrequire	d) (2) Part	 Am aterial B	(calculatio	nofenvin	onmental b	urden i fro	m process	ing i i requi	ired), (3)	
F -	?art/m ateriai C ≍ Proce∎∎ino	calculation of and an employ t	fen vironm∢ oro ≺≺∎eo:	ental burden e ce elina metro	from pro di (prei	ceuting an ting, moid	id ar rembij ling, cartin	yi∎require a. etc.ù a∎i	d) Iembiymett	hod i funde	ег 100 а. цп	der 1 ka. 1	ka and ov	er, etci						
				Item										iann by cat	egory(kg)					
NO E	component arti				Pro	oduct data	II 1991 I TOM		Me	tai		Paper/wo od	S	mithetic rei	In	Rubber	General parts	Recycled parts	Reu ced parts	Total
	Unitname	Partname	Part t;p+	Material	Mari (Mg)	Main process- ing tpe	Allem - bly type	10 K. 10 K. 10 M. 10 K. 10 K. 10 M.	izolnikov vorod pisonikyj	Aluminum plate (Hg)	Cu pist» (Hg)	Paper (Mg)	PP(Mg)	PS (Hg)	Cpassiverin (CP) (kg)	7 iya ashdada a Tali a 2007, A gʻ	Harnovi circulcharni ikgi	Recycled parts	Reu∎ed part∎	
1																				
2																				
3																				
4																				
5																				
6																				
'																				
8																				
9																				
10																				
12																				
13																				
14																				
15																				
T	Clauit	Ication	Break	down of sum t	otal	Itte	m													
ſ	Material p	roduction	Portaneouerb13	+Portano serbili +Por	Distriction	Total m	all (kg)													
ā	Denascrit	a (autoat)	Dectore			Process	ing type	iran preveing Ling	a jaala oo ahay geroomah yahiji											
Sum total	MOCOLI	ig (select)		riai B+ Part\m:	atoriarC	Total m	all (kg)													
	-					Allem	bly type	Part a coembly (kg)												
	Partannem	bly(select)	P	art/material C		Total m	all (kg)													

											Document control no		F-08s-0	2
				B 1 1 1 1	1.1.5	2.6	e	,						-
Same.				Breakdown dat:	a sneet (Type	e 2: for manu	facturing sit	e)						
		ethod of data as	sociated wit	h EMS(Environment	tal Management :			001.						
Pi	roduct name						t name							
	Туре					Base	e stage							
	onducted by			Sheet completed on			Report to					r		1
Fisca	al year covered			Start month			End month					-		•
1. Produ	icts manufacture	d within the same	site											
	Product nar	me												Total
÷														
elec														
Allocation item (select)														
, ite														
atio														
100														
٩														
	Allocation ba	asis												
2 Site -	onsumables													
2. one c														
Z. Site c	Name	: (unit)		Amount	Duration (month)	/month	Aunit	Allocation	n selection	Supplementar	y explanation		Remarks	
		: (unit)		Amount	Duration (month)	/month	Aunit	Allocation	n selection	Supplementar	y explanation		Remarks	
		: (unit)		Amount	Duration (month)	/month	Aunit	Allocation	n selection	Supplementar	y explanation	_	Remarks	
Energy	Name	: (unit)		Amount	Duration (month)	/month	Aunit	Alocation	n selection	Supplementar	y explanation		Remarks	
Energy Energy	Name	: (unit)		Amount	Duration (month)	/month	Aunit	Alocation	n selection	Supplementar	y explanation		Remarks	
Energy Energy	Name	: (unit)		Amount	Duration (month)	/month	Aunit	Alocation	n selection	Supplementar	y explanation		Remarks	
Energy Energy Material	Name	: (unit)				Imonth	Aunit	Alocation	n selection	Supplementar	y explanation		Remarks	
Energy Energy Material	Name				Duration (month)	/month	Aunit		n selection	Supplementar			Remarks Remarks	
Energy Energy Material 3. Site e	Name													
Energy Energy Material 3. Site e	Name													
Energy Energy Material 3. Site e Control Vater Lyttem	Name													
Energy Energy Material 3. Site e Control Vater Lyttem	Name													
Energy Energy Material 3. Site e Control Vater Lyttem	Name													

						Document control no.	F-09s-02			
TINE SE	Br	eakdown data	sheet (Type 3: f	or life cycle sta	ge)					
	a document in	compliance with A.4	in Annex A of ISO/J	IS14041.						
Product	vendor									
Product	t name				Conducte	d by	Sheet completed on			
Ту	pe				Fiscal year o	covered	Report to			
Unit cycle stage	Data classification (select)	Main category	ltem Subcategory	Name (unit)	Amount		Explanation	Impact type	Sheet name	Base stage
		wan category	Subcategoly	Name (unit)						
tion]		
Distribution								-		
^										
- Ce										
								-		
								-		
Disposal										
- Se										
e										
Recycle										
	-							-		

		N6) 65		(文章管理委员		F-37a	01				
Ð		•								長 止7	-1				
19 E 4		'nij cital	された東周田	f"-fr"-177.	alt the B	身で表面する。	ことを決まましい	t <i>t.</i>							
				1		1		\$		ŧ		5		6	
	小分類														승사
	(3**317現日														
			明能拉	新新 用	明单位	### #	明单位	新物理	明单位	护推进	明单位	### #	明能拉	\$F\$#08_	
	使用量	单位													
	消費エネルギー	NJ.													
	1 1 1	NGAI													
+ 1		kg kg													
.		kg kg													
×.		kg													
		kg													
		kg													
		kg kg													
		kg													
		kg													
蕉		kg													
齿簧		kg kg													
â		kg													
		kg													
		kg													
		kg kg		<u> </u>										<u> </u>	
		kg kg		-											
		kg													
能可と		kg													
		kg kg													
		kg kg												<u> </u>	
		kg													
춘		kg													
第二人		kg		<u> </u>											
~		kg kg		-											
		kg													
		kg													
*		kg													
地		kg kg													
A.		kg													
		kg													
±		k <u>a</u>													
堪		kg kg													
A		kg kg													
	⊕ ¢														
	データ基準定														
	デース性類														
	ギータ易賞 ギータ有新教師 (絶対	1972													<u> </u>
	* *														
1	親島開大力 生たい開たた														
×	サイト用人力 その他のステージ機能	2人力													
8	その他のステージ使用	认为													
÷.	その他のステージ機能が	机大力													

65	LG計算書(先計:同時 算單段DB()	÷)									文書管	理書号	F	-379-018	
đ		10												様式7-1	
	の厚草位仕、エコサー7環境	ISA' KELI	****	直田 ふぎーね	'-Tz = 141	医支管水白的	ヶ谷田 ナスー	しゃだままし	* *						
<u>``</u>									.,.		古城	影響			
	わやゝ村項目				-					anner					슴計
			景材製造	制品製造	构灵	長用	「「「「」」」」」	小計	景针栽造	制品製造	物元	- इ.म	務兼	গাঁৱা	
	使用量	単位													
	消費エネルギー	MJ													
	消費エネルキュ	Mcal													
* 1 I		kg													
(‡		kg													
₹ ^ル		kg						-							
<u> </u>		kg													
		kg													
ł		kg kg													
		kg kg													
ł		kg													
鉱		kg													
物		kg													
资		kg													
源		kg													
		kg													
		kg													
i i		kg													
1		kg													
		kg													
		kg													
能可当		kg													
IR -1 3		kg													
		kg													
		kg													
		kg													
친		kg													
氮		kg							ļ						
^		kg													
		kg													
		kg													
		kg													
-1-		kg													
水域		kg													
~		kg													
		kg kg													
		kg													
±		kg kg													
携		kg kg													
~ 1		kg													

EcoLeaf Environmental Label LCI Common Base Unit List (V2.1)

Note: This base unit document is a dedicated database that has been created to implement the JEMAI Program. Unauthorized use for other purposes is prohibited.

This list is for publishing the "base unit names" for use when preparing an EcoLeaf label, and is not to address inquiries
regarding detailed information.

How to use the base unit a when preparing an EcoLeaf label:

The production amount (Output) of base materials, parts, etc., produced, or the processed amount (Input) is multiplied by the corresponding common base unit a, and then summed.

Inventory value (i.e.g., CO₂ output in kg) = Σ {common base unit a (e.g., X kg-CO₂/kg) × produced or processed amount W (kg)} Note: In the distribution stage, the common base unit a for transportation by truck being a value for a loading factor of 100%, the processed amount W is to

be calculated according to the formula below: Processed amount W (transportation burden amount: kg·km) = transportation mass (kg) × transportation distance (km) × 100 + mass loading factor (%w)

				Amount			
No	Field	No	Base Unit Name	Amount W	Unit	Main Source	Remarks
1		1	Cold-Rolled steel plate	Produc- tion	kg	Environmental Management, Vol 31, No.6 (1995) P72-P84	From resource acquisition to material (plate) production
2		2	Electroplated steel Plate	Produc- tion	kg	Environmental Management, Vol 31, No.6 (1995) P72-P84	From resource acquisition to material (plate) production
3		3	Hot Dipped steel plate	Produc- tion	kg	Environmental Management, Vol 31, No.6 (1995) P72-P84	From resource acquisition to material (plate) production
4		4	Coated steel plate	Produc- tion	kg	Environmental Management, Vol 31, No.6 (1995) P72-P84	From resource acquisition to material (plate) production
5		5	Electromagnetic steel plate	Produc- tion	kg	Environmental Management, Vol 31, No.6 (1995) P72-P84	From resource acquisition to material (plate) production
6	(le	6	Stainless Steel Plate	Produc- tion	kg	Environmental Management, Vol 31, No.6 (1995) P72-P84	From resource acquisition to material (plate) production
7	(Meta	7	Cu Plate	Produc- tion	kg	Environmental Management, Vol 31, No.6 (1995) P72-P84	From resource acquisition to material (plate) production
8	Material Production (Metal)	8	Al Plate	Produc- tion	kg	For secondary and virgin metal ratios: Resources statistics annual report, 1992, P.98	From resource acquisition to material (plate) production
9	ial Pro	9	Zinc (Zn)	Produc- tion	kg	Research Institute for Resource Recycling and Environmental Pollution Control (Narita, 2000)	From resource acquisition to material (ingot) production
10	Mater	10	Tin (Sn)	Produc- tion	kg	Plastic Waste Management Institute: Evaluation Report on the Impact of the Increase in the Use of Plastic Products on the Global Environment, (1993, 3), P31-38	From resource acquisition to material (ingot) production
11		11	Electrolytic MnO2	Produc- tion	kg	The Chemical Society of Japan Ed.: Chemistry Handbook (Applied Chemistry Edition) 2nd Revision, P216, Maruzen (1973)	From resource acquisition to material (ingot) production
12		12	Metallic Manganese (Mn)	Produc- tion	kg	National Institute of Resources (1988)	From resource acquisition to material (ingot) production
13		13	Electrical Lead (Pb)	Produc- tion	kg	Research Institute for Resource Recycling and Environmental Pollution Control (Narita, 2000)	From resource acquisition to material (ingot) production
14		14	Gold (Au)	Produc- tion	kg	Survey by the Research Institute for Resource Recycling and Environmental Pollution Control (Sugita, 1999)	From resource acquisition to material (ingot) production
15		15	Silver (Ag)	Produc- tion	kg	Survey by the Research Institute for Resource Recycling and Environmental Pollution Control (Sugita, 1999)	From resource acquisition to material (ingot) production
16		1	Glass	Produc- tion	kg	Environmental Management, Vol.31, No.6 (1995), P.81	From resource acquisition to material (pellet) production
17		2	Cement	Produc- tion	kg	From Cement Association of Japan "Cement Handbook" 2000 Edition, P21, 1999 Data (Base Unit).	From resource acquisition to material production
18	nistry)	3	Calcined Lime (CaO)	Produc- tion	kg	Statistical Survey of Energy Consumption (1996) and Resource Annual Report (1996)	From resource acquisition to material production
19	nic Cher	4	Hydrochloric Acid (HCl)	Produc- tion	kg	Chemical Industry Statistics Annual Report (1996)	From resource acquisition to material production
20	Inorga	5	Sulfuric Acid (H2SO4)	Produc- tion	kg	Research Institute for Resource Recycling and Environmental Pollution Control (SRI), 1998	From resource acquisition to material production
21	uction (6	Nitric Acid (HNO3)	Produc- tion	kg	CMC, 1994, P.167	From resource acquisition to material production
22	Material Production (Inorganic Chemistry)	7	Acetic Acid (CH3COOH)	Produc- tion	kg	CMC, 1994, P.173	From resource acquisition to material production
23	Materia	8	Hydrofluoric Acid (HF)	Produc- tion	kg	Environmental Management, Vol.31, No.6 (1995), P.82	From resource acquisition to material production
24		9	Sodium Hydroxide (NaOH)	Produc- tion	kg	The Chemical Society of Japan "Chemistry Handbook: Applied Chemistry Edition (2)", P.207, 1986	From resource acquisition to material production
25		10	Slaked Lime (Ca(OH)2)	Produc- tion	kg	Statistical Survey of Energy Consumption (1996) and Resource Annual Report (1996)	From resource acquisition to material production
26		1	PE (High-density)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p103	From resource acquisition to material (pellet) production
27		2	PE (Low-density)	Produc- tion	kg	1993 Chemical Economy Research Institute Report	From resource acquisition to material (pellet) production
28	Resin)	3	РР	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p104	From resource acquisition to material (pellet) production
29	nthetic	4	PS	Produc- tion	kg	NEDO-GET, 9410-1, P64	From resource acquisition to material (pellet) production
30	ion (Syr	5	PVC	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p81, 111	From resource acquisition to material (pellet) production
31	Material Production (Synthetic Resin)	6	PBT (Polybutylene Terephthalate)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p89, 119	From resource acquisition to material (pellet) production
32	terial P	7	PC (Polycarbonate)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p88, 118	From resource acquisition to material (pellet) production
33	Ma	8	PC-ABS resin (70/30)	Produc- tion	kg	Distribution and addition with 70:30 from PC and ABS data; PC and ABS data have been prepared from the 1993 Chemical Economy Research Institute Report	From resource acquisition to material (pellet) production
34		9	POM (Polyacetal)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p87, 117	From resource acquisition to material (pellet) production
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: This base unit document is a dedicated database that has been created to implement the JEMAI Program. Unauthorized use for other purposes is prohibited.

* This list is for publishing the "base unit names" for use when preparing an EcoLeaf label, and is not to address inquiries regarding detailed information.

How to use the base unit a when preparing an EcoLeaf label:

0 The production amount (Output) of base materials, parts, etc., produced, or the processed amount (Input) is multiplied by the corresponding common base unit a, and then summed.

Inventory value I (e.g., CO_2 output in kg) = Σ {common base unit a (e.g., X kg-CO₂/kg) × produced or processed amount W (kg)}

Note: In the distribution stage, the common base unit a for transportation by truck being a value for a loading factor of 100%, the processed amount W is to

be calculated according to the formula below: Processed amount W (transportation burden amount: kg·km) = transportation mass (kg) × transportation distance (km) × 100 ÷ mass loading factor (%w)

No	Field	No	Base Unit Name	Amount W	Unit	Main Source	Remarks
35		10	PVDC (Vinylidene Chloride Resin)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p83, 112	From resource acquisition to material (pellet) production
36	Ī	11	ABS	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p79, 108	From resource acquisition to material (pellet) production
37		12	AS Resin	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p80, 109	From resource acquisition to material (pellet) production
38	~	13	MMA Resin	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p83, 113	From resource acquisition to material (pellet) production
39	ic Resin	14	PA66 (Polyamide 66)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p85, 115	From resource acquisition to material (pellet) production
40	ynthet	15	PET	Produc- tion	kg	NEDO-GET-9410-1, P.36	From resource acquisition to material (pellet) production
41	tion (S	16	Epoxy Resin (EP)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p92, 123	From resource acquisition to material (pellet) production
42	Material Production (Synthetic Resin)	17	Rigid Urethane Foam	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p96, 126	From resource acquisition to material (pellet) production
43	lateria	18	Soft Urethane Foam (for Automobile)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p95, 125	From resource acquisition to material (pellet) production
44	2	19	Soft Urethane Foam (for Bedding)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p94, 124	From resource acquisition to material (pellet) production
45	Ī	20	Unsaturated Polyester (UP)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, p97, 127	From resource acquisition to material (pellet) production
46		21	Acrylonitrile Resin	Produc- tion	kg	1993 Chemical Economy Research Institute Report, P81, 110	From resource acquisition to material (pellet) production
47	ſ	22	Phenol Resin (PF)	Produc- tion	kg	1993 Chemical Economy Research Institute Report, P81, 110	From resource acquisition to material (pellet) production
48	5	1	Nitrile-butadiene rubber (NBR)	Produc- tion	kg	Rubber Industry Manual, The Chemical Daily: 13599 Chemical Products	From resource acquisition to material (pellet) production
49	Material Production (Rubber)	2	Styrene-butadiene rubber (SBR)	Produc- tion	kg	CRC Research Institute, March 1999, Survey Report, P66	From resource acquisition to material (pellet) production
50	erial Produ (Rubber)	3	Natural rubber	Produc- tion	kg	Malaysian Rubber Board homepage	From resource acquisition to material (pellet) production
51	Mat	4	Butadiene rubber (BR)	Produc- tion	kg	CRC Research Institute, March 1999, Survey Report	From resource acquisition to material (pellet) production
52		1	Ethylene	Produc- tion	kg	NEDO-GET-9410, P26	From resource acquisition to material production
53		2	Xylene	Produc- tion	kg	NEDO-GET-9410, P26	From resource acquisition to material production
54	<u>7</u>	3	Carbon Tetrachloride (CCl4)	Produc- tion	kg	Used data from: CMC "Costs of Chemicals in the 80's", Volume 2, P281, 1979	From resource acquisition to material production
55	hemist	4	Methanol (CH3OH)	Produc- tion	kg	Research Institute for Resource Recycling and Environmental Pollution Control SRI (1998) New Zealand: in charge of methanol	From resource acquisition to material production
56	Material Production (Organic Chemistry)	5	Naphtha	Produc- tion	kg	NEDO-GET-9410, P24	From resource acquisition to material production
57	ion (Or	6	Propylene	Produc- tion	kg	NEDO-GET-9410, P26	From resource acquisition to material production
58	roduct	7	Styrene	Produc- tion	kg	NEDO-GET-9410-1, P64	From resource acquisition to material production
59	iterial F	8	Toluene	Produc- tion	kg	NEDO-GET-9410, P26	From resource acquisition to material production
60	Ma	9	Trichloro ethane	Produc- tion	kg	Environmental Management, Vol.31, No.6, 1995, P.83	From resource acquisition to material production
61	Γ	10	Trichloro ethylene	Produc- tion	kg	СМС, 1994, Р191	From resource acquisition to material production
62		11	Acetone	Produc- tion	kg	СМС, 1994, Р196	From resource acquisition to material production
63	u	1	CFC 11	Produc- tion	kg	Used data from: CMC "Costs of Chemicals in the 80's", Volume 2, P281, 1979	From resource acquisition to material production
64	roducti ic Gas)	2	CFC 12	Produc- tion	kg	Used data from: CMC "Costs of Chemicals in the 80's", Volume 2, P281, 1979	From resource acquisition to material production
<mark>6</mark> 5	Material Production (Organic Gas)	3	HFC-134a	Produc- tion	kg	Environmental Management, Vol.31, No.6 (1995) P.82	From resource acquisition to material production
66	Ma	4	HFC-245fa	Produc- tion	kg	Survey on the Impact of Thermal Insulation Materials on Global Warming, NEDO-GET-9709 (1998)	From resource acquisition to material production
67	(Wood	1	Corrugated cardboard	Produc- tion	kg	Paper Pulp Handbook, 1998 Edition, and others, Japan Paper Association, 1998, 4 issue and others	From resource acquisition to material production
68	and Paper)	2	Cardboard	Produc- tion	kg	Paper Pulp Handbook, 1998 Edition, and others	From resource acquisition to material production

Note: This base unit document is a dedicated database that has been created to implement the JEMAI Program. Unauthorized use for other purposes is prohibited.

* This list is for publishing the "base unit names" for use when preparing an EcoLeaf label, and is not to address inquiries regarding detailed information.

How to use the base unit a when preparing an EcoLeaf label:

- 0 The production amount (Output) of base materials, parts, etc., produced, or the processed amount (Input) is multiplied by the corresponding common base unit a, and then summed. Inventory value I (e.g., CO₂ output in kg) = Σ {common base unit a (e.g., X kg-CO₂/kg) × produced or processed amount W (kg)} Note: In the distribution stage, the common base unit a for transportation by truck being a value for a loading factor of 100%, the processed amount W is to

be calculated according to the formula below: Processed amount W (transportation burden amount: kg·km) = transportation mass (kg) × transportation distance (km) × 100 + mass loading factor (%w)

No	Field	No	Base Unit Name	Amount W	Unit	Main Source	Remarks	
69		3	Paper (Western style) Produc- tion kg Paper Pulp Handbook, 1998 Edition, and others		From resource acquisition to material production			
70	u (r	4	Wood chip (Japan domestic)	Produc- tion	kg	Evaluation Report on the Impact of the Increase in the Use of Plastic Products on the Global Environment, Plastic Waste Management Institute, March 1993, (1993) P151-2	From resource acquisition to material production	
71	Material Production (Wood and Paper)	5	Wood chip (imported)	Produc- tion	kg	Evaluation Report on the Impact of the Increase in the Use of Plastic Products on the Global Environment, Plastic Waste Management Institute, March 1993, (1993) P151-2	From resource acquisition to material production	
72	Materi (Woo	6	Raw wood (imported)	Produc- tion	kg	Evaluation Report on the Impact of the Increase in the Use of Plastic Products on the Global Environment, Plastic Waste Management Institute, March 1993, (1993) P151-2	From resource acquisition to material production	
73		7	Raw wood (Japan domestic)	Produc- tion	kg	Evaluation Report on the Impact of the Increase in the Use of Plastic Products on the Global Environment, Plastic Waste Management Institute, March 1993, (1993) P151-2	From resource acquisition to material production	
74		1	Semiconductor Circuit Packaging	Produc- tion	kg	Koseki: Proceedings in Chemical Engineering, Vol. 24, No. 6, p934-939 (1996)	Up to the production of resin-packaged semiconductor chip (with terminals)	
75	eral)	2	Multilayer substrate	Produc- tion	kg	Koseki: Proceedings in Chemical Engineering, Vol. 24, No. 6, p934-939 (1996)	Up to the production of layered substrate (6 layers)	
76	Parts Production (General)	3	Produc- Koseki: Proceedings in Chemical Engineering, Vol. 24 N		Koseki: Proceedings in Chemical Engineering, Vol. 24, No. 6, p934-939 (1996)	Up to the production of substrate comprising semiconductor package mounted on layered substrate		
77	arts Produ	4	Compressor	Produc- tion	kg	From materials by the Association for Electric Home Appliances	From LCA calculations taking into account the processing and assembly in the production of constituent materials	
78	4	5 Medium-sized motor Produc- tion kg From the by Japan Waste Management		From the by Japan Waste Management Association literature	From LCA calculations taking into			
79	3attery)	1	1 Alkaline-Manganese dry F battery		kg	Hiroshi Takatsuki and Shin-ichi Sakai: Hazardous Waste, Chuohoki (1993) P63 Source: Tokuji Murata: Reconsidering the Easy Use of Dry Batteries, Current Chemistry, October 1991 issue, P18-23	Only the production of constituent materials (zinc, MnO2, Fe) has been taken into account	
80	Parts Production (Battery)	2 Manganese dry battery Produc- tion Produc- Produc- tion Produc- tion		Only the production of constituent materials (zinc, MnO3, Fe) has been taken into account				
81	Parts	3	Lead-acid storage battery	Produc- tion	kg	P78, (1993), source: Japan Lead Zinc Development Association Ed.: Zinc Handbook (1975)	Only the production of constituent materials (lead, H2SO4, PP) has been taken into account	
82	Others)	1 Cleansing agent Production kg Japan Institute of Energy Journal, Vol. 75 (12), p1050 (1996) 2 Ink Production kg Setting based on CO2: electric power/heavy oil = 8/2		Electric power and heavy oil energies taken into account with naphtha and NaOH as raw materials				
83	Parts Production (Others)			From the energy ratio (electric power/heavy oil = 8/2) (raw material: crude oil)				
84	Parts P	3	Lubricant	Produc- tion	kg	Setting based on CO2: electric power/heavy oil = 8/2	From the energy ratio (electric power/heavy oil = 8/2) (raw material: crude oil)	
85		1	Press Forming: Iron	Produc- tion	kg	Chemical Economy Research Institute: Basic Materials Energy Analysis Survey Report, 1993, 9, p135-136 (1993)	Power consumption for pressing 350ml steel can	
86	ø	2	Press Forming: Nonferrous metal	Produc- tion	kg	Chemical Economy Research Institute: Basic Materials Energy Analysis Survey Report, 1993, 9, p135-136 (1993)	Power consumption for pressing 350ml aluminum can	
87	Processing	3 Injection molding Produc- tion kg Chemical Economy Research Institute: Basic Materia Analysis Survey Report, 1993, 9, p135-136 (1993)		Chemical Economy Research Institute: Basic Materials Energy	Power consumption during production of LDPE bottle cap			
88	Å.	4	Blow molding	Produc- tion	kg		Power consumption during PO and PVC molding	
89		5	Glass molding Produc- tion kg Analysis Survey Report, 1993, 9, p135-136 (1993)		Power consumption for 633ml glass bottle			
90	Assembly	Produc. From the 2000 Environmental Label Report and Ver. 2 nublishe		Representative power consumption value for assembly including partial processing				
91		1	2-ton Truck	Transpor- tation	kg.km	Plastic Waste Management Institute (1993) P31-33	Loading factor correction required due to the data being for 100% loading factor	
92	Transportation	2	4-ton Truck	Transpor- tation	kg.km	Plastic Waste Management Institute (1993) P31-33	Loading factor correction required due to the data being for 100% loading factor	
93	Transpo	3	10-ton Truck	Transpor- tation	kg.km	Plastic Waste Management Institute (1993) P31-33	Loading factor correction required due to the data being for 100% loading factor	
94		4 15-ton Truck Transpor- tation kg.km Plastic Waste Management Institute (1993) P31-33		Loading factor correction required due to the data being for 100% loading factor				

Note: This base unit document is a dedicated database that has been created to implement the JEMAI Program. Unauthorized use for other purposes is prohibited.

* This list is for publishing the "base unit names" for use when preparing an EcoLeaf label, and is not to address inquiries regarding detailed information.

How to use the base unit a when preparing an EcoLeaf label:

The production amount (Output) of base materials, parts, etc., produced, or the processed amount (Input) is multiplied by the corresponding common base unit a, and then summed.

Inventory value I (e.g., CO_2 output in kg) = Σ (common base unit a (e.g., X kg- CO_2 /kg) × produced or processed amount W (kg))

Note: In the distribution stage, the common base unit a for transportation by truck being a value for a loading factor of 100%, the processed amount W is to be calculated according to the formula below:

Processed amount W (transportation burden amount: kg·km) = transportation mass (kg) × transportation distance (km) × 100 ÷ mass loading factor (%w)

	Field	No	Base Unit Name	Amount W	Unit	Main Source	Remarks
95		5	20-ton Truck	Transpor- tation	kg.km	Plastic Waste Management Institute (1993) P31-33	Loading factor correction required due to the data being for 100% loading factor
96	Transportation	6	Freight by rail	Transpor- tation	kg.km	98 Energy Economics Statistics Overview, Energy Conservation Center, Japan, January 30th, 1998, p107	No loading factor correction required due to the data already including loading factor
97	Transpo	7	Freight by ship	Transpor- tation	kg.km	98 Energy Economics Statistics Overview, Energy Conservation Center, Japan, January 30th, 1998, p107	No loading factor correction required due to the data already including loading factor
98		8	Freight by air	Transpor- tation	kg.km	98 Energy Economics Statistics Overview, Energy Conservation Center, Japan, January 30th, 1998, p107	No loading factor correction required due to the data already including loading factor
99		1 Electric Power		Produc- tion	kWh	Matsuno (1998) for electrical power in Japan; OECD energy statistics for Foreign countries	Average data for Japan (thermal, hydraulic, nuclear, etc.)
100		2	Heavy oil as fuel	Produc- tion	kg	BUWAL-132 DSO2=85%	Includes discharges during fuel production and combustion
101		3 Diesel oil as fuel		Produc- tion	kg	BUWAL-132 S=0.4 % DSO2=85%	Includes discharges during fuel production and combustion
102		4	Kerosene as fuel kg	Produc- tion	kg	CO2: Environment Agency (1992); Nx, SOx: 1992 Science and Technology Agency	Includes discharges during fuel production and combustion
103		5	Gasoline as fuel kg	Produc- tion	kg	CO2: Environment Agency (1992); NOx, SOx: 1992 Science and Technology Agency	Includes discharges during fuel production and combustion
104		6	Furnace coal	Produc- tion	kg	BUWAL-132 S=0.67 % DSO2=85%	Includes discharges during fuel production and combustion
105		7	Furnace coke	Produc- tion	kg	Energy Utilization Rationalization (1995), P117	Includes discharges during fuel production and combustion
106		8	Furnace oil coke	Produc- tion	kg	Calculated from Chemical Process Collection (1969) P350 and emission factor	Includes discharges during fuel production and combustion
107	_	9	Furnace Town Gas m3	Produc- tion	m3	Institute of Energy Economics, Japan (1999)+BUWAL	Includes discharges during fuel production and combustion
108	nd Fuel	10	Furnace LPG	Produc- tion	kg	BUWAL-132 SOX is ignored	Includes discharges during fuel production and combustion
109	10 Furnace LPG 11 Furnace LNG 12 Heavy oil		Produc- tion	kg	BUWAL-132 SOX is ignored	Includes discharges during fuel production and combustion	
110			Heavy oil	Produc- tion	kg	NEDO-GET-9410-1, P.24	Fuel production only
111	Ë	13	13 Diesel oil Production kg NEDO-GET-9410-1, P.24 14 Kerosene Production kg NEDO-GET-9410-1, P.24 15 Gasoline Production kg NEDO-GET-9410-1, P.24		NEDO-GET-9410-1, P.24	Fuel production only	
112		14			NEDO-GET-9410-1, P.24	Fuel production only	
113		15			NEDO-GET-9410-1, P.24	Fuel production only	
114		16 Coal Kg Pollution Control (Kato, 2000) 17 Coke Produc- kg Energy Use Rationalization (1995)		Research Institute for Resource Recycling and Environmental Pollution Control (Kato, 2000)	Fuel production only		
115					kg		Fuel production only
116		18	Oil coke	Produc- tion	kg	Chemical Process Collection (1969) p.350	Fuel production only
117		19 Town Gas m ³ Produc- tion m ³ Institute of Energy Economics, Japan (1999) 20 LPG Produc- tion kg NEDO-GET-9410-1, P.24		Produc-	m³	Institute of Energy Economics, Japan (1999)	Fuel production only
118				NEDO-GET-9410-1, P.24	Fuel production only		
119		21	LNG	Produc- tion	kg	Chemical Economy Research Institute (1993)	Fuel production only
120		1	Oxygen (O2) m3	Produc- tion	m3	Naonori Matsumoto: Low-temperature Engineering, Vol. 11, No.1, P35-42 (1984)	Power consumption during production by low-temperature separation method
121		2	Nitrogen (N2)	Produc- tion	kg	From an air analyzer manufacturer hearing (February 2001)	Power consumption taken into account
122	Utility (Gas)	3	Hydrogen (H2) m3	Produc- tion	m3	Hearing Survey (1995)	Electrical power and diesel consumption with naphtha raw material (byproduct: steam)
123	ŪŦ!	4	Chlorine (Cl2)	Produc- tion	kg	The Chemical Society of Japan "Chemistry Handbook: Applied Chemistry Edition (2)", P.207, 1986	Electrical power and steam consumption with industrial salt raw material (byproduct: H2)
124		5	Ammonia (NH3)	Produc- tion	kg	Hearing Survey	Electrical power and diesel consumption with naphtha raw

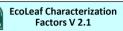
Note: This base unit document is a dedicated database that has been created to implement the JEMAI Program.

Unauthorized use for other purposes is prohibited.

* This list is for publishing the "base unit names" for use when preparing an EcoLeaf label, and is not to address inquiries regarding detailed information.

How to use the base unit a when preparing an EcoLeaf label:

The production amount (Output) of base materials, parts, etc., produced, or the processed amount (Input) is multiplied by the corresponding common base unit a, and then summed.


Inventory value I (e.g., CO_2 output in kg) = Σ {common base unit a (e.g., X kg- CO_2/kg) × produced or processed amount W (kg)}

Note: In the distribution stage, the common base unit a for transportation by truck being a value for a loading factor of 100%, the processed amount W is to be calculated according to the formula below:

Processed amount w (transportation burden amount: kg·km) = transportation mass (kg) × transportation distance (km) × 100 ÷ mass loading factor (%w)

No	Field	No	Base Unit Name	Amount W	Unit	Main Source	Remarks	
125		1	Industrial water	Produc- tion	kg	Tokyo City Data	Electrical power and water consumption; soil discharge	
126	Utility (Water)	2	Clean water (kg) Produc- tion		kg	Ministry of Health and Welfare: Japan Water Works Association, Time-based Analysis of Water Supply Statistics, Water Works Association Journal, Vol. 67, No. 8, p46-84 (1998)	Electrical power and water consumption; soil discharge	
127	Utility	3	Ultrapure water	kg starter		Electrical power, clean water, industrial water and steam consumption		
128		4	Steam	Produc- tion	kg	Japan Boiler Association: Boiler Almanac, 1999 Edition	Electrical power, kerosene and clean water (10% supply) consumption	
129	cling ting)	1 Shredding Proc		Process- ing	kg	Environmental Management, Vol.31, No.7 (1995) P.95	From shredder electrical power consumption	
130	Disposal and Recycling (Crushing and Sorting)	2	2 Uron Sorting Kg		From the 1993 Engineering Advancement Association of Japan Trust Report	From magnetic sorter electric power consumption		
131	oosal ar Ishing a	3	Non-ferrous Metal Sorting Process- ing kg From the 1993 Engineering Advancement Association of Japan Trust Report			From eddy current + pneumatic separator electric power consumption		
132	Disp (Cru	4 Sorting: Plastics Process- ing kg 1993 Engineering Advancement Association of Japan Trust Report		From specific gravity separator electric power consumption				
133		1			Prepared through collaboration with four autonomous bodies (1999), including ash (15.5%)	Electric power, water and Ca(OH)2 consumption; atmospheric, water body and soil discharge		
134	Disposal and Recycling Incineration and Landfill)	2	Incineration: Industrial waste	Process- ing	kg	Obtained from three industrial waste businesses (1999)	Electric power, heavy oil, water, Ca(OH)2, NaOH and HCI consumption; atmospheric discharge	
135	l and Ro ion and	3	Incineration: Biomass process- ing kg Prepared through collaboration with four autonomous bodies (1999) and corrected		Zero CO2 discharge from paper incineration origin			
136	Disposal (Incinerati	4	andfill: General waste Process- ing kg Prepared through collaboration with four autonomous bodies (1999)		Electric power, diesel oil and NaOH consumption; BOD, COD and SS discharge			
137		5 Landfill: Industrial waste Process- ing kg Obtained from three industrial waste businesses (1999)		Electric power, diesel oil and NaOH consumption; BOD, COD, SS, TN and TP discharge				
138		1 Recycle: to cold-rolled steel Process- ing PEMAI (1995) p.118 Non-traditional Technology Report (1995), p.103		Electric oven melting + rolling = plate forming				
139	(u	2 Recycle: to copper plate Process- ing kg Non-traditional Technology Report (1995), p.89		Electric oven melting + rolling = plate forming				
140	Disposal and Recycling (Regeneration)	3	Recycle: to Aluminum plate	Process- ing	kg	For secondary and virgin metal ratios: Resources Statistics Annual Report, 1992, P.98 For rolling: Non-traditional Technology Report, 1995, P.5	Electric oven melting + rolling = plate forming	
141	ling (Re	4	Recycle: to Thermoplastic pellet	Process- ing	kg	Calculated with 60% thermal efficiency melting temperature (average value for PS, ABS, PC, PE, PP, etc.)	Melting + injection molding = pelletizing	
142	l Recyc	5	Recycle: to corrugated cardboard	Process- ing	kg	Paper Pulp Handbook, 1998 Edition, and others	Corrugated cardboard production from used paper	
143	osal and	6 Recycle: to Cardboard Process- ing kg Paper Pulp Handbook, 1998 Edition, and others		Paper Pulp Handbook, 1998 Edition, and others	Cardboard production from used paper			
144	Disp(7 Recycle: to Paper Processing kg Paper Pulp Handbook, 1998 Edition, and others		Paper production from used paper				
145		8 Recycle: to Glass Process- ing kg From Chemical Economy Research Institute: Basic Materials Energy Analysis Survey Report, 1993.9 issue, P129-130, Table 1- 3-15		Glass melting + forming				
146	and)ther)	1 Sewage processing Process- ing kg Japan Resource Association Ed.: Life Cycle Energy in Big City I Anforume, January 13th, 1999, p.147-149 2 Decomposition: CFC 11 Process- ing kg Environmental Management, Vol.31, No.7 (1995) P.95		Japan Resource Association Ed.: Life Cycle Energy in Big City Life, Anforume, January 13th, 1999, p.147-149				
147	Disposal and Recycling (Other)			Environmental Management, Vol.31, No.7 (1995) P.95				
148	Di: Recy	3	Decomposition: CFC 12	Process- ing kg Environmental Management, Vol.31, No.7 (1995) P.95		Environmental Management, Vol.31, No.7 (1995) P.95		

(ERP)

Note: This characterization factors table is a dedicated database that has been created to implement the "EcoLeaf Environmental Label". Unauthorized use for other purposes is prohibited.

					1	2	3	4	5	6	7 Discharge (water bodies)
			Sub-category		Consumption	n (depletion)		Discharge (a	tmosphere)	phere)	
	Inventory Item		Name (JEMAI Program)		Resource depletion	Energy	Global Warming	Acidification	Ozone Depletion	Photochemical Oxidant POCP	Eutrophication
		No	Definition	Unit	Inverse of (Recoverable) Reserves of World's Resources	Fuel Higher Heating Value	Global Warming Potential (GWP) 100- year	Acidification Potential (AP)	Ozone Depletion Potential (ODP)	Photochemical Ozone Creation Potential (POCP)	Eutrophication Index (NP)
	Reference Substance			Iron Ore (iron content)	Crude Oil	CO2	SO2	CFC-11	Ethylene (ethylene=1)	PO4	
\vdash	coal	1	coal reserves	kg							
	crude oil (as fuel)	2	oil reserves	kg							
	LNG	3	LNG reserves kg	kg							
	uranium ore (U)	4	U reserves	kg							
	crude oil (as material)	5	crude oil (as raw material)	kg							
	iron ore (Fe)	6	Fe reserves	kg							
	copper ore (Cu)	7	Cu reserves	kg							
1	bauxite (Al)	8	Al reserves	kg kg							
5	nickel ore (Ni)	9	Ni reserves	kg							
Resource Consumption	chromium ore (Cr)	10	Cr reserves	kg							
Sur 1	manganese ore (Mn)	11	Mn reserves	kg							
l 5	lead ore (Pb)	12	Pb reserves	∿8 kg							
e e		12									
0	tin ore (Sn)		Sn reserves	kg							
Re	zinc ore (Zn)	14	Zn reserves	kg							
	gold ore (Au)	15	Au reserves	kg							
	silver ore (Ag)	16	Ag reserves	kg							
	silica sand	17	silica sand (silica sand)	kg							
	halite	18	NaCl	kg							
	limestone	19	limestone (limestone)	kg							
	soda ash (natural soda ash)	20	soda ash (natural soda ash)	kg							
	wood	22	wood	kg							
	water	23	water	kg							
	CO2	1	CO2	kg							
here	SOx	2	SOx	kg							
sp	NOx	3	NOx	kg							
Ę	N2O	4	N2O	kg							
Discharge into Atmosphere	CH4	5	CH4	kg							
E.	CO	6	CO	kg							
arg	NMVOC	7	NMVOC	kg							
isch	CxHy	8	CxHy	kg							
1 -	dust	9	dust	kg							
0	BOD	1	BOD	kg							
into	COD	2	COD	kg							
Bo	N total	3	N total	kg							
Discharge into Water Bodies	P total	4	P total	kg							
Dis S	SS	5	SS	kg							
\vdash	Unspecified Solid Waste	1	Unspecified Solid Waste	kg							
Discharge into Soil		2	Slag	kg							
ischal nto S	- v	3	Sludge	kg							
in Dis	Sludge	4									
	Low-level radioactive waste	4	Low-level radioactive waste	kg							